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ABSTRACT 

Solitary thermals and continuous plume thermals both occur in nature, and the intermediake case of interacting 
successive thermals in a series may also be an important part of atmospheric convection. This analysis shows that 
residual updraft and vorticity concentration in the wake of a preceding thermal can have important effects on its 
successor. 

A fluid mechanics model of buoyant clouds rising through a rotating medium is constructed for the purpose of 
predicting some of the sequential thermal effects that can be measured quantitatively for thermals simulated in the 
laboratory. The agreement with theory is satisfactory for the parameters that are subject to measurement, but some 
relevant constants can only be determined experimentally. 

For a situation in which a first thermal reacts strongly with the rotation field, it  is shown that a succeeding thermai 
may receive a sizable enhancement of its vertical momentum even though its predecessor was suppressed by the 
interaction. These findings may be relevant to the generation and maintenance of small-scale atmospheric vortexes 
such as tornadoes, waterspouts, and dust devils. 

1. INTRODUCTION 
Numerical and laboratory simulations of successive 

thermals have been conducted to study the effects of 
wakes and the interactions of toroidal circulations when- 
ever one buoyant element comes into the domain of 
another. 

Some of the most important interaction effects may be 
distinguished according to the time interval between the 
departures of thermals from a heated surface. The ex- 
treme situation for long time intervals is the isolated and 
discrete buoyant element, and the situation approaches 
that of a continuous plume or jet as the time interval 
approaches zero. Between these extremes are three 
distinct classifications according to whether the time 
intervals are short, intermediate, or relatively long. 

For “short” time intervals, a second thermal will have 
its rate of rise so enhanced by the updraft of its predecessor 
that the second will actually overtake the first. Depend- 
ing on their relative torus diameters at  this time, they will 
either coalesce into a single invigorated thermal or else 
the second one will pass through the center of the first 
one and continue upward in isolation. 

‘LIntermediate” time intervals are typified by some 
enhancement of rise rate due to wake effect, but these do 
not result in overtaking or coalescing. 

“Long” time intervals are classified as those for which 
the updraft in the wake has decayed to the point of 
ineffectiveness, but residual turbulence causes a more 
rapid dilution of a succeeding thermal than would be 
the case in the absence of a wake. 

In  the laboratory simulation experiments, but not 
necessarily in the real atmosphere, the latter two phases 
merge quite noticeably; and the effects of residual updraft 
and turbulence both govern the evolution of a second 
thermal. 

1 Also at  the LTV (Ling-Temco-Vought, Inc.) Research Center, Dallas, Tex. 

When a rotating medium is considered, the series effect 
is more conveniently classified accordingly as the environ- 
mental field of vorticity is predominantly uniform (“solid” 
rotation) or irrotational (V-R vortex). Of course, the time 
interyal between thermals gives an additional complexity; 
but its importance decreases somewhat in proportion to 
the magnitude of the rotation speed. 

A theoretical analysis has yielded numerical predictions 
of successive thermal interaction effects, in both stationary 
and rotating media. This approach derives governing 
equations based on the conservation of volume, vertical 
momentum, angular momen tum, and buoyancy, similar 
to the turbulent convection equations of Morton et al. 
(1956). Solutions are obtained for some cases and com- 
pared with simulations in the thermal tank. 

Much can be learned from such experiments about the 
nature of successive thermal interactions and the result- 
ing enhancements of velocity fields despite the inherent 
complexities and consequent oversimplifications. 

The major simplifications are in the assumptions of: 
1.  Total buoyancy is invariant with time (adiabatic 

2. First and succeeding thermals have the same initial 

3. First and succeeding thermals originate from the 

4. Turbulent exchange a t  the periphery of the thermal 

5. The thermals are axially symmetrical. 
This paper is an extension of the research reported by 

Wilkins et al. (1969) dealing with rotation-influenced 
solitary thermals. The previous work showed that some 
of the important interactions occurring in laboratory 
simulations of the phenomenon could be predicted by a 
theory derived from equations stating the conservation 
of cloud volume, buoyancy, vertical momentum, and 

thermals). 

buoyancy. 

same spot and follow the same path. 

is not taken into account explicitly. 
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angular momentum. The volume and vertical growth 
were measured quantitatively for the simulated clouds, 
and these measurements compared very well with theory. 
For some combinations of cloud buoyancy and ambient 
vorticity, a concentrated votex was seen to form in the 
wake of the thermal. Vortex-forming interactions of this 
kind were found to suppress the vertical growth of the 
cloud by a predictable amount, although one of the pa- 
rameters of the theory, the radius of entrainment, had to be 
estimated from the experimental results. 

In extending the theory to attack the problem of succes- 
sive thermals, we consider the effect on a thermal of 
encountering the wake from a preceding thermal. In the 
first situation, we assume that the vorticity field is 
essentially the same for both thermals, and in the second 
situation we assume that the first thermal reacts strongly 
with the rotation field; this rearrangement of the ambient 
vorticity gives an important change of environment for the 
second thermal, and the analysis will attempt to predict 
some of the consequences. 

8. THEORY 
The equations of Morton et al. (1956) expressing the 

conservation of volume, vertical momentum, and buoy- 
ancy in a thermal cloud were modified by Wilkins et al. 
(1969) to take into account the effect on momentum of 
an interaction of the thermal’s toroidal circulation with 
a rotating environment. These equations apply to an 
“adiabatic” thermal or a thermal in which the total 
buoyancy does not change with time. This is comparable 
to a dry thermal in a neutrally stable atmosphere or to 
our laboratory experimental thermal, created by injecting 
a detergent foam into a tank of water. The modified 
equations are : 

volume 

(“ s b 3 w ) = ~  &A+- 4 7rb3w, (2) a 3  3 momentum 

and 

buoyancy (3) 

the new term has been underlined. The assumptions 
about preservation of shape, velocity distribution, and 
entrainment proportional to vertical velocity w through 
an entrainment constant a are the same as in Morton et al. 
(1956). For simplicity, a sphere-equivalent radius b is used 
throughout, even though the cloud shape is not in general 
spherical. Turner (1964) has shown that the shape factor 
is negligible in the case of the spheroidal clouds simulated 
in the laboratory. The entrainment constant a relates 
inflow velocity to thermal cap velocity. The density-deficit 
buoyancy acceleration is 

A=g(Po-p) lpo (4) 

where g is gravitational acceleration, p is cloud density, 
and p o  is the density of the environmental fluid. An 

acceleration o arises from the changes that occur in the 
vertical gradient of pressure as a result of rearrangement 
of the velocity field when vortex formation occurs; 
tangential velocity increases owing to conservation of 
angular momentum in fluid entrained by the thermal. 
The derivation by Wilkins et al. (1969) shows that the 
form taken by the solutions to the conservation eq (1-3) 
depends on the assumption made about R, the entrainment 
radius or “reach” of the thermal into its environment. 
This radius has the same meaning here as in Kuo (1966). 
Solutions were obtained for two cases: (A) one in which 
R (=constant) is assumed not to vary with height and 
(B) one in which R is assumed to be proportional to the 
sphere-equivalent radius b through a constant y. These 
two cases will also be used to analyze successive thermals 
in a rotating medium. I n  each case, the solutions for a 
solitary thermal will be given first for comparison purposes 
and also because these solutions will be needed for the 
purpose of analyzing successive thermals. 

SOLUTIONS FOR (A) 

For a solitary thermal, the rotation-induced vertical 
acceleration LJ was found by Wilkins et al. (1969) to be 

(5) 

where z is the vertical coordinate and 

A:=3.6R4fi2 ( 6 )  

where D is the constant angular velocity of the rotating 
environment. The factor 3.6 is -13-2 . log 10 where 10 
represents the ratio of sphere-equivalent radius to a small 
critical radius; this ratio is not important to  the present 
analysis. 

The solutions to the conservation equations for the 
solitary thermal are 

b =At1I2, 

A= ( 3 F / 4 ~ A ~ ) t - ~ ’ ~ ,  

3 
2 E=-t-’=entrainment rate, 

A == [ (3  aF/2 T) - 2 A: a2]1‘4, 

4 
3 

b 

F=-~b~b=constant  buoyancy force, 

and (7) 

h=-=height of thermal cap. 
01 

Solutions for a nonrotating fluid are obtained by setting 
A,=(). Since A: is nonnegative, suppression of the ther- 
mal’s growth occurs as a result of rotation, regardless of the 
direction. Note that the entrainment rate is independent of 
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rotation for the simpler case of R=const; some justification 
for this case is seen in the fact that the entrainment rate 
was also not affected by rotation for the simulated thermals 
reported by Wilkins et al. (1969).  

Successive thermals. In  addition to  the assumptions 
mentioned earlier, the following new assumptions are 
introduced for the purpose of analyzing the interactions 
between thermals in a series: 

1 .  The wake velocity of a preceding thermal possesses 
the same "top hat" velocity profile as its thermal cap. 

2 .  The wake velocity decays according to the same 
law as obtained for the thermal cap. 

The latter assumption is a key one for the theoretical 
development to follow. Other schemes have been tried for 
the wake velocity configuration, but the one above is 
most consistent for use with a modification of the existing 
theory. 

According to this reasoning, the wake updraft W, 
residual from a preceding thermal of cap velocity w,, will 
have a magnitude proportional to w1 corrected for a prior 
decay time T ,  which is just the delay time between ther- 
mals. The vertical velocity w1 for the first thermal is 
placed in the proper time frame for the second one if 
time 1 in equation set (7) is replaced by t + T ,  so that 

Since the radial growth of a succeeding thermal is not at  
all constrained to be the same as its predecessor, it is 
logical to expect that the wake effect must somehow 
depend on the ratio bibl ,  where again the subscript 1 
applies to a preceding thermal. We observe qualitatively 
in simulation experiments that the magnitude of the 
thermal's response to the wake apparently is proportional 
not only to w1 but also to  the amount of the wake occupied 
by the thermal, suggesting that wake velocity varies with 
radius. This is an important consideration for thermals in 
a rotating medium because the thermal's radius is strongly 
affected by the interaction with the rotation field. Assum- 
ing the wake effect to be proportional to b / b ,  also makes the 
problem tractable, although elsewhere the theoretical 
model assumes the vertical velocity to be constant across 
the thermal. This ratio may be regarded somewhat as a 
correction factor. The top-hat velocity profile assumption 
is a useful one; apparently its lack of realism introduces 
little error in the analysis of solitary thermals, as evidenced 
in the experiments reported by Scorer (1957),  Turner 
(1963),  and Wilkins et al. (1969).  The wake radius will be 
given by 

bl=A( t + T )  '" (9 )  

to be consistent with the assumption about wl, and thus 

The modifications to the conservation eq (1-3) are now 
quite straightforward. The first equation in the set is not 
affected, since entrainment is assumed to be proportional 
only to the vertical velocity w of the thermal relative to  
the wake in which the thermal is imbedded. In  the second 
equation, the total momentum (per unit mass) due to both 
vertical velocities (w and W )  must be conserved by balanc- 
ing the forces due to buoyancy and rotation suppression. 
The third equation is unaffected. The new equations are 

4?rb3 =41rb'aw, d t 3  0 
db,  (12) - [- ?rb3(w+W) ab3A-$ ?rb3A; . - - b3 dz 

d 4  
d t  3 

and 

rb3A= const. (13) 
4 F=- $ (: a b 3 ~ ) = 0 ,  3 

From eq ( 1 1 )  and the relation 

db db 
dz  

z=(w+W) - j  

we obtain 
db aw 
Z!=w+w* 

(14) 

Because of velocity decay in the wake, we can assume that 
W is considerably less than w, thus eq (12)  is simplified by 
the substitution a=db/dz.  The conservation equations 
can now be combined to yield the linear secondlorder dif- 
ferential equation 

This equation is placed in a more manageable form by 
nondimensionalizing the independent variable such that 

When letting y=b4,  h=3aF/?r-4a2Ag, and using primes to 
represent x derivatives, eq (16)  can be written as 

X 2 y " + 2 p ~ c 3 1 1 - 2 ~ y = h T 2 x 2 .  (18)  

This equation has for a particular solution the function 
hT2X2/2(1+/3), and the reduced equation is satisfied by a 
function of the form x", where 

n=1, -28. (1 9 )  

Thus the complete solution is written as 

XT'X' 
y = z ( l + p )  + ClX+ czx-26. 

where 8 is a constant of proportionality in which the 
magnitude can only be inferred from experimental data. 

The boundary conditions to  be applied are consistent 
with those used by Wilkins et al. (1969) in the analysis of 
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solitary thermals. The requirement that y=O when t=O 
(or x =1) gives 

so that 
c1= - (1+ C,) (21) 

The requirement that dyldt (proportional to  vertical 
momentum) be zero a t  t=O gives 

cz= (1+2l3)-’, 
so that finally 

Negative p is not excluded, but p<O represents a down- 
draft in the wake. This situation is of only minor interest 
in this analysis, but we note that singularities exist for 
p=- 1 and p= - (1/2). These are special cases, requiring 
separate solutions to  eq (18) which are not contained in 
(24). When applying the same boundary conditions as 
before, these solutions are 

@ = - I :  Y = X T ~ X ~  (25) 
and 

These solutions will show a suppression of the thermal even 
in the absence of rotation. 

That eq (24) is a quite general solution to the problem 
of successive thermals in a rotating medium is seen in the 
fact that (24) contains as special cases all the solutions 
for the simpler situations. For  example, the solutions for 
successive thermals in a nonrotating medium are obtained 
by setting &=O. 

The solutions for a solitary thermal are obtained by 
setting p = r = O  in eq (24), which produces the set (7); 
this set contains as a special case the solution set for 
solitary thermals in a nonrotating medium. 

Note that the rotation-effects constant A, applies to the 
second thermal, and the solution (24) for the case R=const 
is independent of any assumption as to whether or not 
&=A2. This is not the case for R variable, as will be seen 
later. However, for the present case, the first thermal is 
supposed not to alter the ambient vorticity field 
appreciably, and so A1=A2 is not a bad assumption. 

The expressions for w, h, E, and A may be calculated 
from the solution for y (=b4) in eq (24). For example, 

The height of rise h of the thermal cap as a function of 
time must be obtained from 

h= (w+W)dt, 
J O Y  

which can be written as 

by substituting from eq (lo),  ( l l ) ,  and (17). The integral 
in eq (29) appears to represent that portion of the thermal’s 
rise which has been added as a result of the presence of the 
wake; however, the radius b is also affected. The fourth- 
root polynomial in b makes the integration 

very difficult .to perform. For short times (t 2 T )  and (p< l ) ,  
it  is possible to expand the polynomial and integrate term 
by term. This has been carried out by rejecting third and 
higher powers of 0 and t / r ,  and eq (29) then becomes 

where the substitution f=x-1 has been made. The ap- 
proximate expression for h is 

SOLUTIONS FOR (e) 
The assumption R=yb is reasonable, in that the radius 

of entrainment of the thermal is somehow related to the 
sphere-equivalent radius of the cloud, although the exact 
relationship is not known. In  the case of a rotational en- 
vironment, we know that lateral motions tend to be sup- 
pressed (Taylor-Proudman effect,), and we observe experi- 
mentally that the cloud appearance changes from 
spheroidal to  narrow cylindrical as the rotational influence 
is increased. Unfortunately, this observation does not 
provide us with a prediction of the functional relationship 
between R and b,  but it does indicate that R and the visible 
radius tend to vary in the same sense. Thus we consider 
the case R=yb (y constant) while acknowledging that, in 
the case of strong rotational influence, it is possible that, 
owing to vertical stretching, the sphere-equivalent radius 
may increase while R remains constant or even decreases. 

The rationale is the same as before for the modifications 
t o  the conservation equations. Again, we derive first the 

2 From (Taylor 1921, Proudman 1916, and Chandrasekhar 1961) 
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solutions for a solitary thermal, since these are used in 
the determination of the wake velocity present for the 
succeeding thermal. The vertical acceleration w due to the 
rotation effect was derived by Wilkins et al. (1969) to  be 

db 
dz w=-Afb-  (32 1 

in eq (2), where 

A:=72L?22(5.672- 1). (33) 

For the normal situation in which rotation suppresses 
the vertical motion of the cloud (A:<O), the solutions for 
the solitary thermal were shown by Wilkins et al. (1969) 
to be 

h = b/a 
b=  ( ~ F / ~ T ( u A : ) ” ~  [1-~0~(2aAlt)]”~ 

1 
2 -  w= - (3 FA74m) la sin (2 milt) [ 1 - cos(2aAlt)] -3/4 

A= ( ~ F C Y ~ A ; / ~ ~ ) ’ / ~  [l-c0~(2aA~t) ]+I4 

and (34) 
3 
2 E=--& sin(2aAlt)[l -cos (2~y&t)]-~. 

The solutions for rotational enhancement of vertical 
motion are similar to eq (34) except that the trigonometric 
functions are hyperbolic. Note that entrainment is 
affected by rotation for the case R=rb, whereas it was 
not affected when R=const. 

Successive thermals. The analysis proceeds exactly as 
before. The wake velocity W is given by 

W=pw1-=- * BbAl cot aAl(t+T) (35) b i  2 

where w1 and b1 are obtained from the set (34) by replacing 
t with t+T. The momentum conservation equation 
comparable to eq (12) is 

(36) 
4 ,db rb3A--  rb4A2--. 
3 d z  

This equation can be combined with the other conserva- 
tion equations to obtain the linear second-order differential 
equation 

E + 2 p d l  cot aAl(t+T) db4 --28a2A; csc2 rxhl(t+~).b4 
at2 at 

+ 4a2Ag* b4= 3aFJr. (37 ) 

For R=rb, the governing equation contains both A1 and 
A2, which certainly need not be equal. In the event (dis- 
cussed later) that the preceding thermal reacts strongly 
with the rotation field, vorticity will become concentrated 
within the thermal’s wake to such an extent that A, and 
A2 may differ by more than a negligible amount, and the 

solution must be obtained from eq (37). If the inter- 
action is not so strong that vortex formation occurs in 
the wake of the first thermal, then we can assume 
&=&=A, giving 

This equation is further simplified by the transformation 

t=LyA(t+r), $=cot { (39) 

to obtain 

+ 2 [ 2 - p ( l + ~ ~ ) ] b ~ = 3 F / ~ a A ~ .  (40) 

A method of definite integrals may be applied to  solve 
this equation, although it is probably more efficient to 
compute via finite-diff erence routine directly from eq 
(40) * 

3. ANALYSIS FOR THE CASE 
OF STRONG INTERACTION 

We now consider the case where a preceding thermal 
has interacted with the rotating medium so as to form 
a concentrated vortex, thus rearranging the profile of 
tangential velocity from linear to hyperbolic (solid rota- 
tion to “irrotational” motion). The second buoyant 
element encounters an environment in which the vorticity 
is essentially zero over most of the region contacted by 
the thermal. 

The derivation of the rotation effects term for the 
momentum conservation equation parallels that given 
by Wilkins et al. (1969). The environment is assumed to 
have a profile of tangential velocity with a maximum 
v, at a small radius T,. Prior to vortex formation, the 
velocity a t  that radius was arm, and afterward the ex- 
pression 

v,rm=ORi =VeR1 (41 1 
states the principle of angular momen tum conservation 
for the fluid entrained inward from an “effective radius” 
R1 of the first thermal. The tangential velocity V, at 
radius R, is assumed to be unchanged by the process, 
since fluid moving into that location will come from 
above or below at the same radial distance R,. Thus R1 
is a radius beyond which the influence of the thermal 
is negligible. This is consistent with the assumptions of 
Euo (1966). At any radius T greater than T,, the tan- 
gential velocity is given by 

(42 1 VeT = VmTm. 

The seoond thermal will entrain fluid from a distance 
R2 which is not necessarily the same as R1. Bernoulli’s 
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law can be used to predict the form of the total energy 
conserved in the environment of the second thermal. The 
pressure distribution must conform to the velocity 
d .,stribution such that 

(43) 

where v, and Vr are the radial components of the velocities 
a t  the radii r and R2, respectively, and p, and p 2  are the 
fluid pressures inside and outside the thermal, respectively. 
I n  the case of strong interaction, there must be consider- 
able convergence; and therefore, for simplicity, we will 
assume that the two velocity components are equal. 
Equation (43) can be written as 

(44) 

The average value of pl (designated s,) inside the 
thermal cloud can be found by integrating p, over the 
area included between r, and b ;  we assume that the 
J egion between r=O and r=rm is negligibly small. Hence 

2 log - 
Po 

The following assumptions have the purpose of making 
the problem tractable. While these assumptions are not 
proved, they are all consistent with the rationale stated 
earlier for the situation of strong interaction between the 
toroidal circulation of the thermal and the ambient 
vorticity field. 

1. The cloud radius b is 10 times larger than r,, so that 
log b/r,=2.3. Therefore, r i  can be neglected in comparison 
to b2. 

2. Experimentally, we observe the cloud to be cylindrical 
for the case of strong interaction, and this indicates that 
R,=const for the first thermal. There is not sufficient 
observational data to suggest a functional form for R2 
(second thermal), but we will relate R2 to the sphere- 
equivalent cloud radius as before (R,=yb). With these 
assumptions, the last equation can be written as 

The difference between the vertical gradient of pressure 
inside and outside the thermal is a measure of the ro- 
tation-induced vertical acceleration that we are seeking. 
Thus we have 

=-g--2Q2Bf ($3.6) * &’ (47) f (9 
and the ro tation-induced vertical acceleration can then 

be written as 

where 

h2,=2Q2R: ($-3.6) 

Vol. 99, No. 3 

(48) 

(49) 

and A: can be either positive or negative, depending on 
the magnitude of y. Experiments with solitary thermals 
in a rotating medium (Wilkins et al. 1969) showed that 
y was less than 0.5. The critical value of y in eq (49) is 
0.526; larger values will give suppression of the cloud’s 
vertical motion, and smaller values give enhancement. This 
is to  be contrasted with the situation for “solid rotation” 
(eq 33) in which the critical value of y is 0.42; smaUer 
values of y result in suppression of the vertical momentum 
in this case. This is an important distinction between the 
two different kinds of ambient vorticity fields. 

The equation for the conservation of vertical momentum 
now reverts to the simpler form of eq (12) rather than 
(36). The definition of the wake velocity W is given by 
eq (10) for the case &=const, and combining the three 
conservation equations gives the lineetr second-order 
differential equation 

Formally, this equation is solved in the same manner as 
eq (16). Of course, the definition of the rotation effects 
term A, is now entirely different and contains one ad- 
ditional empirical parameter 7. Refer to eq (24-31) for 
the solutions to eq (50). 

4. LABORATORY SIMULATIONS 

The laboratory apparatus is the thermal tank and 
turntable shown in figure 1. The tank (a) is 183 cm deep 
and 75 cm in diameter and is fabricated of 1.25-cm 
Plexiglas? The tank is filled with water to 90-percent 
capacity, and injections of buoyant material are made 
through an orifice in the bottom of the tank through a 
300-cm3 stainless steel syringe (b), The syringe is con- 
trolled remotely at console (c) by means of a solenoid 
valve, which releases compressed air to drive the piston of 
tho syringe. The Nikon FT 35-mm camera with electric 
drive (d) used to record data is also controlled at this 
console, as is the motor drive for the turntable. An 
exposure rate of two frames per second was used for 
recording the evolution of the cloud, and a photogram- 
metric method (Wilkins et  al. 1969) was used to eliminate 
distortion and obtain the volume of the cloud as a function 
of time. For rotation experiments, the camera rotates 
with the tank and thus sees only the relative vorticity 
created by the interaction of the thermal with the rotation 

a Mention of a commercial product does not constitute an endorsement. 
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FIQURE 1.-Experimental apparatus. 
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t =  3 

1 . 2  

t -  I 

FIGURE 

I 

t = 7  

t . 6  

t = 5  

2.-Photographic sequence showing a second tbermal 
(column 11) released into the wake of a preceding thermal 4.5 s 
after the initial injection. 

field. The sphere-equivalent radius b and the entrainment 
rate E were calculated directly from these measurements. 
The only other quantity measured quantitatively was the 
height h of the thermal cap. More details of the experi- 
mental methods are given in Wilkins et al. (1969). 

The buoyant material (fig. 1) is a commercial detergent, 
Triton X-100, 10-percent concentration in water, whipped 
into a fine foam with a heavy duty Waring blender (e). 
The experiment consists of injecting an initial thermal 
into the tank and, after a specified delay time, injecting a 
second thermal into the wake of the first one. The camera 
operates continuously through the entire run. Figure 2 
shows a typical sequence, with every other frame removed, 
for the nonrotation situation. It is obvious from the 
pictures in column II that the merging of the clouds 

INITIAL \ / THERMAL 

SECOND THERMAL 

FIGURE 3.-Schematic diagram showing the toroidal circulations 
of a k s t  thermal and an overtaking second thermal. 

prohibits quantitative photogrammetric reduction of the 
data beyond about the eighth second. The situation is 
worse for the rotation case; the vertical stretching of the 
clouds causes them to merge instantly and cover the full 
depth of the tank. As a consequence, quantitative measure- 
ments have not yet been made for the rotation case of 
successive thermals. Until this experimental difficulty can 
be overcome, the comparison with theory must be limited 
to consecutive thermals in a stationary medium and 
solitary thermals in a rotating medium. 

Despite the difliculty with resolving photographically 
the boundaries between successive thermals, Visual 
observations provide considerably more information about 
the nature of the interactions. For example, in the ex- 
periment depicted in figure 2, the initial thermal reaches 
the top of the tank in about 12 s. The first thermal was 
almost half way to the top when the second one was 
released (only the lower two-thirds of the tank shows in 
the photograph). Nevertheless, owing to the wake effect, 
the second thermal was able to rise through the initial 
one and reach the top of the tank ahead of it. Figure 3 
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*0° c 
THEORY - 

time ( 5 )  

FIGURE 4.-Height of thermal cap versus time, nonrotation with 
5-s time delay. 

illustrates schematically the circulation patterns at  the 
time that the second thermal penetrates the first. At 
this instant, the second thermal's peripheral downward 
flow counters the upward flow in the first one. As the 
second thermal emerges at  the top, its entraining flow 
counters the divergent flow of the first one. By this time, 
the toroidal circulations of both thermals appear to have 
decayed extensively; but this might be due to the finite 
depth of the tank. Experiments in a deeper fluid are 
indicated as a possible way to resolve this uncertainty. 

Visual observations also have provided some further 
information about consecutive thermals in a rotating 
medium. Qualitatively, at  least, some aspects of the 
theory for strong interaction were verified. This case was 
simulated by bubbling air into the tank (fluid rotating as 
a solid) until a concentrated vortex formed; the velocity 
profile was then the irrotational type, although efforts to 
estimate the profile of tangential velocity from the 
depression of the fluid surface at  the center of the tank 
were not successful. If the air bubbling is now stopped, 
the visibility in the tank will be satisfactory for injecting 
a second" thermal. The vorticity field present at  the 
time of injection may not be quite the same as one created 
by a single preceding thermal, but it should in fact be 
very much like the one assumed in deriving the theory for 
strong interaction. The second thermal 9 seems to be 
separated into two parts. The inner part travels upward 
near the center of the tank at  greatly enhanced vertical 
velocity, while the outer part is greatly suppressed. The 
relative size of each portion fo1 a given ihjection depends 
somewhat upon the magnitude of the tank rotation' rate 
L? initially. According to the theory, enhancement or  
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FIGURE 5.-Height of thermal cap versus time, nonrotation with 
10-s time delay. 

suppression occurs accordingly as the entrainment radius 
parameter is greater or less than a critical value. This 
indicates that the parameter y may be a function of 8, 
although this relationship is not yet well enough under- 
stood to be incorporated into the theory. 

The plots of experimental data on the consecutive 
thermals are fitted by theoretical curves in such h manner 
as to obtain as much information as possible about the 
undetermined parameters of the theory. The entrainment 
constant (Y has been taken to be 0.2 for all of the theoret- 
ical computations; it was never found to vary significantly 
from this value in any of the experiments. This has also 
been the experience of other investigators. In  plotting, 
all thermals are referred to a zero time base to facilitate 
comparison of the curves. Each data point represents an 
average for at  least eight experiments. 

Successive thermals without rotation. The injections for 
these thermals were 130 cm3 of foam with a density of 0.20 
g CM-~ ,  so that F=105 cm4 s - ~ .  Figures 4 and 5 give the 
height of the thermal cap as a function of time for delay 
times of 5 and 10 s, respectively. Two values of @ were 
used in figure 4 to see which curve might best fit the 
experimental data. Note that @ = O . l  appears to predict 
best the amount of updraft enhancement of the rate of 
rise and also predicts correctly a crossover of the two curves. 
However, the crossover could be experimental error; 
and figure 5 for r=10 s shows better agreement for @=0.5- 
In  fact, @ = O . l  gives no enhancement of the second ther. 
mal after a 10-s time delay. If anything, @ should be ex- 
pected to decrease with the time delay between thermals; 

415-428 0 - 71  - 4 
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FIGURE 6.-Sphere-equivalent radius versus time, nonrotation with 
5- and 10-s time delays. 
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and so, @=0.5 seems to be the best choice. This value is 
used for the remainder of the computations. The theoret- 
ical curves of b and h for this case were obtained from eq 
(24) and (31), respectively. No approximations were made 
in eq (24) for b,  but the second thermal solutions for h in 
eq (31) are strictly valid only for t<r. Extension of the 
curves beyond t=5  min when 7=5,  however, does not 
appear to give any unreasonable trend to the curves. 

The growth of the sphere-equivalent radius b is shown 
in figure 6. The variations predicted by theory for the three 
experimental situations plotted on figure 6 are included 
within the solid curve. The experimental data points also 
show a small range of variation, in agreement vith theory. 

Successive thermals with rotation. Theoretical calculations 
are made for this case for the purpose of comparing rotat- 
ing with nonrotating thermals, even though experimental 
data are not available. The curves for the sditary thermal 
are calculated from eq (24) with @ = T = O .  The curves for 
second thermals with Rz=const are also calculated from 
eq (24) with Rz=6 cm. The curves for second thermals 
with strong interaction are calculated from eq (50) for 
two values of y to show the range of rotation effects be- 
tween y=0.2 and y=0.5. The entrainment radius for the 
first thermal is assumed to be RL=6 cm in all cases, and 
the initial rotation rate is assumed to be 0=2.1 rad s-'. 

Figures 7 and 8 show the evolution of h and b, respec- 
tively, for 7=5 s, and figures 9 and 10 are for ~ = 1 0  s. In  
figure 7, the height h is seen to be increased relative to a 
solitary thermal for all rotation conditions, although the 
curve for Rz=const would show even more enhancement 
if rotation were not present. The curve for b in figure 8 
shows a small amount of suppression of radial growth for 
Rz=const, as the rotation suppression effect dominates 
the residual updraft from the previous thermal. 

The analysis for 7=10 s correctly shows that the wake 
effect becomes less important, for the longer time delay. 
Curves for h versus time and b versus time are all sup- 

FIGURE 7.-Height of thermal cap versus time, rotation with 5-s 
time delay. 
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FIGURE 8.-Sphere-equivalent radius versus time, rotation with 5-s 
time delay. 

pressed in figures 9 and 10 relative to  their counterparts 
in figure's 7 and 8, and both h and b are now suppressed 
relative to a solitary thermal. Figure 10 shows that, beyond 
the age of 5 s, the 10-s thermal for strong interaction and 
y=0.5 has the same radius as a solitary thermal. As the 
time between thermals increases, the rotation suppression 
becomes more dominant over the updraft enhancement. 
We point out also that, for subcritical values of y (greater 
than 0.526), the strong interaction theory will predict 
strong suppression rather than enhancement. 
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FIGURE 9.-Height of thermal cap versus time, rotation with 10-s 
time delay. 
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FIGURE 10.-Sphere-equivalent radius versus time, rotation with 
10-s time delay. 

It is important to note that the second thermal en- 
hancements for strong interaction occur despite the fact 
that the first thermal is actually suppressed by the rota- 
tion field in each case. Figure 11 shows the amount of 
suppression of h for rotation rates of 1.05, 2.1, and 3.15 
rad s-' as predicted by eq (7) for solitary thermals. The 
entrainment radius R1 is assumed to be 7.1 cm, to agree 
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FIGURE 11.-Comparison of theory with the experiment for height 
of the thermal cap versus time, showing the suppression in- 
creasing with rotation rate. 

with data presented by Wilkins et al. (1969). The data 
points on the graph below these curves are for laboratory 
simulation experiments in which the injections are 300 cm3 
of foam with F=2X105 cm4 s2. The fit to  the theoretical 
curves is excellent, and the curves agree well that the 
suppression increases with the magnitude of Q. 

We must also point out that the solution set (34) with 
r=0.5, while oscillatory, will give close agreement with 
the experimental data points in figure 11 except for the 
highest rotation rate (Q=3.15 rad s-'). The period of the 
oscillation is 1rr/aA=15.8 s for this case, and therefore set 
(34) predicts that the thermal will begin to  descend after 
about 4 s. Since this is not observed experimentally, we 
are led to prefer the solution set (7) with R=const for 
the case of a solitary thermal in a rotating medium. 
Solution set (7) also predicts correctly that the entrain- 
ment rate will not be affected by rotation. 
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5. CONCLUSIONS 

The treatment given here, albeit somewhat oversimpli- 
fied, does have the advantage of demonstrating some of 
the most important processes associated with the inter- 
actions of successive thermals in a rotating medium. The 
theory takes into account the conservation of volume, 
momentum, and buoyancy in individual thermals and 
allows for a residual wake updraft between a thermal and 
its successor. The analysis is also suited to  laboratory 
simulations where some of the parameters of such a com- 
plex phenomenon are subject to some degree of control; 
and in fact, the theory shows very good agreement with 
the experimental data where comparisons are possible. 

The theory for strong interaction tells us that the 
vertical motion may be actually enhanced if the geometry 
of the situation is favorable, which is to  say whenever the 
entrainment radius is small compared with the cloud 
radius. In this case, increasing the ambient rotation rate 
further enhances the vertical motion instead of suppressing 
it, as in the solutions obtained from eq (24). 

Experiments in a deeper fluid are needed to  ob, %rve at  
least two of the successive thermal processes that are 
prohibited with the present apparatus. One of these is the 
overtaking process, when one thermal passes through 
another, and the other is interactions between third and 
subsequent thermals. Certainly, if a second thermal differs 
substantially from the first thermal, then the wake of the 
second thermal must also be different from that of the 
first; and hence the third thermal must be different from 
the second, and so on. Some preliminary efforts have been 
made to extend the lifetime of thermals in the 183-cm 
tank by injecting thermals of smaller density deficit. 
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